US009329947B2

a2 United States Patent 10) Patent No.: US 9,329,947 B2
Elyasheyv et al. 45) Date of Patent: May 3, 2016
(54) RESUMING A PAUSED VIRTUAL MACHINE ;?;g’jg? g% : igg} é PDi;flfr etal. .o 702/1282/;
,156, € e
WITHOUT RESTARTING THE VIRTUAL 2006/0143517 Al* 6/2006 Douceur et al. 714/21
MACHINE 2008/0098309 Al* 4/2008 Fries etal.c..... 715/734
2008/0201711 Al 8/2008 Amir Husain
(75) Inventors: Vitaly Elyashev, Ramat Gan (IL); Amos 2010/0037089 Al* 2/2010 Krishnanetal. 714/5
: 2011/0029970 Al* 2/2011 Arasaratnam 718/1
Benari, Yokneam Hamoshava (IL.) 2011/0202728 Al* 82011 Nicholsetal. ... 711/141
(73) Assignee: Red Hat Israel, Ltd., Raanana (IL) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this “Solid Ice™ Provisioning Manager”, Apr. 2008, pp. 1-5, Qumranet,
patent is extended or adjusted under 35 ‘I‘Iéc'l'dl ™ Overview”, Apr. 2008, pp. 115, Q 1
olid Ice verview”, Apr. , pp. 1-15, Qumranet, Inc.
U.S.C. 154(b) by 404 days. Red Hat, Inc., “Red Hat Enterprise Virtualization Manager for Serv-
ers”, 2009, 4 pages.
(21) Appl. No.: 12/821,066 Red Hat, Inc., “Red Hat Enterprise Virtualization Manager for Serv-
ers, Delivering on the Promises of Desktop Virtualization”, 2009, 14
(22) Filed: Jun. 22,2010 pages.
(65) Prior Publication Data * cited by examiner
US 2011/0314470 Al Dec. 22,2011 Primary Examiner — Tuan Dao
(51) Int.Cl Assistant Examiner — William C Wood
Gll0;$F 5/455 (2006.01) (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
GO6F 11/14 (2006.01) (57) ABSTRACT
GOGF 11/20 (2006.01) L
A computing device executing a virtualization manager
(52) US.CL . . .
CPC ... GOGF 11/1484 (2013.01); GOoF 11203 9e1cts that a virtual machine running on a host has been
: paused. e the virtual machine is paused, no processor
. (?013'.01)’ GOGF 2009/45575 (2013.01) cycles are assigned to the virtual machine. The computing
(58) Field of Classification Search device determines whether a condition that caused the virtual
USPC s 71 1/6'3 718/1, 100 machine to be paused has been resolved. If the condition has
See application file for complete search history. been resolved, the computing device causes the virtual
(56) Ref Cited machine to be resumed. Resuming the virtual machine
eferences Cite

U.S. PATENT DOCUMENTS

7,533,229 B1*
7,797,587 B2 *

5/2009 van Rietschote
9/2010 Vasudevan et al.

711/161
714/47.1

100 —
-

Client Machine(s)
105

includes assigning processor cycles to the virtual machine
and performing a last input/output operation that was
attempted prior to the virtual machine being paused.

18 Claims, 6 Drawing Sheets

Host Controller
Machine 115
VM(s)
Virtualization 150
Manager 135
VM Resuming -
Module 140 VM Pausing
Module 155
Hypervisor 145
Host Machine(s) 110 Datafz‘gfe(s)

[lfe]
Device(s)

U.S. Patent May 3, 2016 Sheet 1 of 6 US 9,329,947 B2

100 ﬂ;
Client Machine(s)
105
Host Controller
Machine 115
VM(s)
Virtualization 150
Manager 135 —
VM Resuming .
Module 140 VM Pausing
Module 155
Hypervisor 145
Host Machine(s) 110 Data Store(s)
125
I/O
Device(s)
130

Fig. 1

U.S. Patent May 3, 2016 Sheet 2 of 6 US 9,329,947 B2

200 .
‘-
R
i VM VM
282 286
|
|
Host Machine 280 [~
Z SNl VM
[282
N 4
. Data Data
H'gh. , M . Store Store
Availability | Resuming VM 202 204
Manager Module <1|::> 284 — —
296 212 / -
/
Virtualization Manager /
205 /

Host Controller Machine 274 | /

,/ Host Machine
K 276
I/

Host Machine 27

Fig. 2

U.S. Patent May 3, 2016 Sheet 3 of 6 US 9,329,947 B2

i

Detect That VM Running On A Host Has Been
Paused 303 1303

308

NO Condition That

Caused VM To Be Paused
Resolved?

YES
Resume Paused VM 32

END

Fig. 3

U.S. Patent May 3, 2016 Sheet 4 of 6 US 9,329,947 B2

400

4 START

Receive Report From Host That VM Has Been Paused 405

408

Has Condition
That Caused VM To Be Paused Been
Identified?

NO

Start Migration Timer 410

‘ Start Resume Timer 412 ‘

l

Resume Paused VM

Condition That o M5

When Resume Timer Caused YM To Be Paused
Expires 418 Resolved? YES
NO 420
Y Pavsed Aoa? 2 Migration Timer Expired?
425
YES

Resume Paused VM 430 ‘

END Proceed To |

Fig. 4

U.S. Patent May 3, 2016 Sheet 5 of 6 US 9,329,947 B2

500 —

4
START
Monitor Hosts, Each Host Hosting One Or More
Virtual Machine 505
Identify Host That Has Paused A VM Due To Lack

Of Access To A Data Store 510

YES Paused
VM Stateless?
520
Terminate Paused VM 525 g

0 Other Hosts
Have Access To
Data Store?

NO

Load Copy Of VM On Another

Host m YES
Determine That
Data Store Is
Malfunctioning 550
Migrate Paused Virtual Machines To Other Hosts
0 |
Send Notification
To Administrator
555
Resume Migrated VMs 545

END
Fig. 5

U.S. Patent

May 3, 2016 Sheet 6 of 6 US 9,329,947 B2
600
a A
Processing Device 602
Instructions 622 Vide%?(;splay
VM Resuming Module -
140
Main Memory 604
) Instructions 622 Alpha-Numeric
- Input Device
VM Resuming
Module 140

612

Static Memory

Cursor Control
Device
606 5 614
[de)
(2]
3
M
Network Interface Signal Generation
Device Device
608 616
Data Storage Device 618
Machine-Readable
Storage Medium 628 N
4 ' ™. : e
Network Instructions 622
620
- VM Resuming
Module 140

Fig. 6

US 9,329,947 B2

1
RESUMING A PAUSED VIRTUAL MACHINE
WITHOUT RESTARTING THE VIRTUAL
MACHINE

TECHNICAL FIELD

Embodiments of the present invention relate to monitoring
virtual machines, and more specifically to identitying paused
virtual machines and automatically resuming paused virtual
machines.

BACKGROUND

A host machine (e.g., computer or server) may host mul-
tiple virtual machines, each of which includes its own guest
software. The host machine is typically connected to some
type of storage domain for writing data to and reading data
from. Occasionally, a data store (e.g., a storage device or an
entire storage domain) may become unreachable by a host
machine. When this occurs, some host machines pause the
virtual machines that they host to prevent corruption of the
virtual machines. However, once a virtual machine has been
paused, an administrator must manually determine that
access to the data store has been reopened, and manually
resume the paused virtual machines.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be understood more fully from the
detailed description given below and from the accompanying
drawings of various embodiments of the invention. The draw-
ings, however, should not be taken to limit the invention to the
specific embodiments, but are for explanation and under-
standing only.

FIG. 1 is a block diagram of a network architecture, in
which embodiments of the invention may operate;

FIG. 2 illustrates a server side of a network architecture, in
accordance with one embodiment of the present invention;

FIG. 3 is a flow diagram illustrating a method for one
embodiment of automatically resuming paused virtual
machines;

FIG. 4 is a flow diagram illustrating a method for another
embodiment of automatically resuming paused virtual
machines;

FIG. 5 is a flow diagram illustrating a method for one
embodiment of migrating paused virtual machines; and

FIG. 6 illustrates a block diagram of one embodiment of a
computer system.

DETAILED DESCRIPTION

Embodiments of the invention provide a mechanism for
automatically resuming paused virtual machines (VMs). In
one embodiment, a computing device executing a virtualiza-
tion manager detects that a virtual machine (VM) running on
ahost has been paused. While the VM is paused, no processor
cycles are assigned to the virtual machine. The computing
device determines whether a condition that caused the virtual
machine to be paused has been resolved. This may be deter-
mined by monitoring the host, including storage connections
of'the host. If the condition has been resolved, the computing
device causes the virtual machine to be resumed. In one
embodiment, the virtualization manger sends a resume com-
mand to the host to cause the virtual machine to be resumed.
Resuming the virtual machine includes assigning processor

10

15

20

25

30

35

40

45

50

55

60

65

2

cycles to the virtual machine and performing the last input/
output operation that was attempted prior to the virtual
machine being paused.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present invention.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “detecting”, “determining”, “identifying”, “causing”,
“migrating”, or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or reg-
isters or other such information storage, transmission or dis-
play devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may com-
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

The present invention may be provided as a computer
program product, or software, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other elec-
tronic devices) to perform a process according to the present
invention. A machine-readable medium includes any mecha-
nism for storing information in a form readable by a machine
(e.g., a computer). For example, a machine-readable (e.g.,
computer-readable) medium includes a machine readable
storage medium such as a read only memory (“ROM”), ran-
dom access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory devices, etc.

FIG. 1is a block diagram of a network architecture 100, in
which embodiments of the invention may operate. The net-

US 9,329,947 B2

3

work architecture 100 includes, but is not limited to, one or
more client machines (clients) 105 communicatively coupled
to one or more host machines (hosts) 140 or a cluster of hosts
110 over a network 120. The network architecture 100 may
also include the clients 105 connected with a host controller
machine (host controller) 145 over the network 120. Network
120 may be a private network (e.g., a local area network
(LAN), a wide area network (WAN), etc.) or a public network
(e.g., the Internet), and may be a combination of one or more
networks. Note that the host machines, host controller
machine and/or client machines may be physical hardware
machines (e.g., desktop computers, server computers, etc.) or
virtual machines. One or more of the host machines, host
controller machine and/or client machines may be hosted by
the same physical hardware machine if these machines are
virtual machines.

Each host 110 is a server configured to host one or more
services, applications or other processes. One or more hosts
110 may host virtual machines (VM) 150. The host 110 may
include a bare platform hardware that may be a personal
computer (PC), server computer, mainframe, or other com-
puting system. The platform hardware can include a proces-
sor, memory, input/output devices, etc. Alternatively, the host
110 may be a virtual machine.

The host 110 may include a hypervisor 145 (also known as
a virtual machine monitor (VMM)). The hypervisor 145,
though typically implemented in software, may emulate and
export a bare machine interface to higher level software. Such
higher level software may comprise a standard or real-time
operating system (OS), may be a highly stripped down oper-
ating environment with limited operating system functional-
ity, may not include traditional OS {facilities, etc.

In one embodiment, the hypervisor 145 is run directly on
bare platform hardware. In another embodiment, the hyper-
visor 145 is run on top of a host OS. Alternatively, for
example, the hypervisor 145 may be run within, or on top of,
another hypervisor. Hypervisors may be implemented, for
example, in hardware, software, firmware or by a combina-
tion of various techniques.

The hypervisor 145 presents to other software (i.e., “guest”
software) the abstraction of one or more virtual machines
(VMs) 150, which may provide the same or different abstrac-
tions to various guest software (e.g., guest operating system,
guest applications, etc.). A virtual machine 150 is a combi-
nation of guest software that uses an underlying emulation of
a hardware machine (e.g., as provided by hypervisor 145).
Virtual machines 150 can be, for example, hardware emula-
tion, full virtualization, para-virtualization, and operating
system-level virtualization virtual machines. Each virtual
machine 150 includes a guest operating system (guest OS)
that hosts one or more applications within the virtual
machine. The guest OSes running on the virtual machines 150
can be of the same or different types (e.g., both may be
Windows operating systems, or one may be a Windows oper-
ating system and the other a Linux operating system). More-
over, the guest OSes and the host OS may share the same
operating system type, or the host OS may be a different type
of OS than one or more guest OSes. For example, a guest OS
may be a Windows operating system from Microsoft® and a
host OS may be a Linux operating system available from Red
Hat®.

In one embodiment, each virtual machine 150 hosts or
maintains a desktop environment providing virtual desktops
for remote clients (e.g., client 105) and/or local users (e.g., via
input/output devices 130). A virtual desktop is a virtualized
desktop computer, and thus includes storage, an operating
system, applications installed on the operating system (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

4

word processing applications, spreadsheet applications,
email applications, etc), and so on. However, rather than these
functions being provided and performed at the client 105,
they are instead provided and performed by a virtual machine
150. In other embodiments, virtual machines 150 are not
virtual desktops. For example, VMs 150 may be virtual serv-
ers.

In one embodiment, users access virtual machines 150
remotely via clients 105. In another embodiment, users
access virtual machines 115 via input/output (I/O) devices
130 that are connected directly to host or cluster of hosts 110.
The 1/0 devices 130 include devices that enable a user to
interact with one or more virtual machines 150. The I/O
devices 130 may include, for example, a display, a keyboard,
a mouse, a microphone, a usb port, a firewire port, and so on.

Each client machine 105 may be a personal computer (PC),
palm-sized computing device, personal digital assistant
(PDA), etc. Clients 105 may be fat clients (clients that per-
form local processing and data storage), thin clients (clients
that perform minimal or no local processing and minimal to
no data storage), and/or hybrid clients (clients that perform
local processing but little to no data storage). In one embodi-
ment, clients 105 essentially act as input/output devices, in
which a user can view a desktop environment provided by a
virtual machine (e.g., a running instance of an operating
system including storage available to the operating system
and programs installed and/or running on the operating sys-
tem) on a monitor, and interact with the desktop environment
via a keyboard, mouse, microphone, etc. In one embodiment,
a majority of the processing is not performed at the clients
105, and is instead performed by virtual machines 150 hosted
by the host 110.

Each VM 150 may communicate with one or more clients
105, one or more applications running on those clients 105,
and/or one or more 1/O devices 130. Additionally, a single
client 105 and/or /O device 130 may communicate with
multiple virtual machines 150. For example, each application
running on a client 105 may communicate with different
VMs. Alternatively, all of the applications of a client 105 may
communicate with a single VM. In one embodiment, there is
a one to one correspondence between VMs 150 and clients
105 or 1/0O devices 130. In one embodiment, VMs 150 com-
municate with clients 105 and/or client applications using a
multichannel protocol (e.g., Remote Desktop Protocol
(RDP), Simple Protocol for Independent Computing Envi-
ronments (SPICE™) from Red Hat, etc.).

The host or hosts 110 are connected to one or more data
stores 125. Each data store 125 may be a single storage
device, or a storage domain that includes one or more storage
devices and/or a storage server for managing the storage
devices. The data store 125 may be a storage area network
(SAN), a network attached storage (NAS), or a combination
thereof. Any changes that are made to services, applications,
processes, etc. running on the host 110 (e.g., changes made to
a state of a virtual machine 150 during active sessions for the
virtual machine) can be stored in the data store 125. Changes
made to the state of a virtual machine 150 may include, for
example, modification to files within the virtual machine,
installation of new programs to a guest OS in the virtual
machine, receipt of new email at an email client within the
virtual machine, etc. Accordingly, in one embodiment clients
105 need little or no local storage.

In one embodiment, hypervisor 145 includes a virtual
machine pausing module 155. When a problem occurs that
may cause a VM to become corrupted, VM pausing module
155 pauses the VM to prevent any damage to that VM. For
example, when the host 110 loses connection to data store

US 9,329,947 B2

5

125, VM pausing module 155 may pause VMs 150. In one
embodiment, the VM 150 notifies the hypervisor 145 that a
problem has occurred. This notification may prompt the
hypervisor to pause the VM. For example, VM 150 may
notify hypervisor 145 when the VM 150 fails to perform an
input/output (I/O) operation, such as writing data to data store
125 or reading data from data store 125. Alternatively, hyper-
visor 145 may detect that a problem has occurred without
receiving a notification from a VM 150. When the VM 150
fails to successfully perform an 1/O operation, the VM may
save that last I/O operation (or last few /O operations). Alter-
natively, the hypervisor 145 may save the last I/O operation(s)
when it pauses the VM 150. The last /O operation(s) can later
be reattempted when the VM is resumed.

The host 110 may be coupled to a host controller machine
115 (via network 120 as shown or directly). In one embodi-
ment, in which the host controller machine (host controller)
115 is directly connected to the host 110, host controller 115
is not connected to clients 105 via network 120. The host
controller 115 may monitor and control one or more functions
of hosts 110.

In one embodiment, the host controller 115 includes a
virtualization manager 135 that manages virtual machines
150. Virtualization manager 135 may be configured to add a
virtual machine, delete a virtual machine, balance the load on
the host cluster, provide directory service to the virtual
machines, resume virtual machines, and/or perform other
management functions.

In one embodiment, the virtualization manager 135 moni-
tors each of the hosts 110 to determine whether they have
access to the one or more data stores 125 and to determine
whether any of the virtual machines 150 have been paused.
Virtualization manager 135 includes a virtual machine
resuming module 140. If any VMs 150 have been paused on
the host 110, the VM resuming module 140 attempts to deter-
mine why the VM was paused. In some instances, the hyper-
visor 145 may report both the paused state of a VM 150 and a
reason the VM was paused (e.g., a condition that caused the
VM to be paused). In other instances, the hypervisor may
report only that a VM was paused without identifying a prob-
lem that caused the VM to be paused.

The VM resuming module 140 may deduce a problem that
caused the VM to be paused based on how many VMs have
been paused, whether VMs from multiple hosts have been
paused, when the VMs were paused, network traffic at the
time the VM was paused, whether the host machine has
access to data store 125, and/or additional information. For
example, if the host machine 110 lost access to data store 125,
VM resuming module 140 may determine that the VM was
paused due to the lost connection between the data store 125
and host 110. The VM resuming module 140 may then deter-
mine whether other hosts have access to the data store 125.
This information may be used to determine whether there is a
full network failure, partial network failure, data store failure,
host failure, or other problem.

If, on the other hand, a few VMs on the host 110 were
paused while others were not, and no connection failure
between the data store 125 and host 110 was reported, it may
be determined that the VM was paused due to insufficient
allotted storage space. For example, each VM 150 has an
allocated amount of dedicated storage space on a data store.
The VM can run out of available storage space. When this
occurs, the VM requests an extension of storage space. How-
ever, if network traffic is high or the data store is busy when
the VM requests the extension, the request may time out and
the extension may not be granted. This may cause that VM to
have an [/O failure or full disk error while other VMs running

5

10

15

20

25

30

35

40

45

50

55

60

6

on the same host have no errors. In this case, the hypervisor
145 may pause the VM even though no problems were
detected.

VM resuming module 140 can detect when a problem that
caused one or more VMs to be paused has been resolved. For
example, when virtualization manager 135 identifies that a
connection between host 110 and data store 125 has been
restored, VM resuming module 140 may have access to this
information. Virtualization manager 135 may identify that a
connection between host 110 and data store 125 has been
restored, for example, by periodically polling the host 110 for
connection status updates (including a status of the connec-
tion to data store 125). When VM resuming module deter-
mines that a problem that caused a VM to be paused has been
resolved, VM resuming module 140 directs the hypervisor
145 to resume the paused VM. Resuming the paused VM
includes assigning processor cycles to the VM 150. Addition-
ally, hypervisor 145 may have saved a last input/output (/O)
operation that the VM 150 attempted to perform (or a last few
1/O operations that VM attempted to perform). Resuming the
VM 150 may further include performing the one or more
saved [/O operations by the VM.

FIG. 2 illustrates a server side network architecture 200, in
accordance with one embodiment of the present invention.
The server side network architecture 200 in one embodiment
is a component of network architecture 100 of FIG. 1. The
server side network architecture 200 includes multiple host
machines (hosts) 276, 278, 280 connected with a host con-
troller machine (host controller) 274 and one or more data
stores 292, 294.

The host controller 274 manages each of the hosts 276,
278, 280, and includes a virtualization manager 205 that
manages virtual machines running on the hosts. The virtual-
ization manager 205 may manage one or more of provision-
ing of new virtual machines, connection protocols between
clients and virtual machines, user sessions (e.g., user authen-
tication and verification, etc.), backup and restore, image
management, virtual machine migration, load balancing,
resuming virtual machines, and so on.

In one embodiment, the virtualization manager 205
includes a high availability manager 296. The high availabil-
ity manager 296 may monitor virtual machines running the
hosts, and load balance the hosts as necessary. For example, if
multiple VMs running on a host suddenly shut down, a load
imbalance may occur such that that the host is under-utilized
as compared to other hosts. The high availability manager 296
may respond to the load imbalance by migrating virtual
machines from hosts that are hosting many virtual machines
to the host that is hosting few or no virtual machines to
redistribute load. High availability manager 296 may also
detect the failure of a host, and migrate the virtual machines
(or other applications, processes, etc.) that had been running
on the failed host to other hosts. In one embodiment, high
availability manager 296 performs live migrations, in which
VMs and/or other applications are migrated while they are
still running.

In one embodiment, the high availability manager 296
periodically (e.g., every few seconds, every minute, etc.) or
continuously polls the hosts to determine statuses of each of
the hosts. Alternatively, the hosts may send reports to the host
controller 274 without being polled. For example, the hosts
may send reports on a periodic basis, or whenever a status of
one or more virtual machines on the host changes.

Received poll responses and/or reports include a status of
connectivity to one or more data stores 292, 294. For
example, a report from host 280 may indicate that host 280
has lost connection to data store 294. In one embodiment, the

US 9,329,947 B2

7

reporting host can identify whether or not it has a connection
to a particular data store 292, 294. Access may be lost, for
example, if the data store has failed, if a communication link
(e.g., a path) to the data store has failed, if there is a problem
with a port of the host, if software or firmware included in the
host has malfunctioned, or for other reasons. However, the
host may not be able to identify why access to the data store
has been lost.

In one embodiment, responses/reports further identify a
status of paths to the data stores 292, 294. For example, data
store 292 is a multi-path data store that includes two paths to
host 280, host 276 and host 278. Data may be sent between
each host and data store 292 via either or both of the available
paths. If one of the paths becomes disabled, then communi-
cations can still be exchanged via the remaining path.

High availability manager 296 aggregates the status infor-
mation regarding host access (e.g., connectivity) to data
stores that is received from the hosts. The high availability
manager 296 can then identify whether any of the hosts or
data stores are malfunctioning based on the aggregated
results. For example, if host 276 has lost access to data store
292, but host 280 and host 278 still have access to data store
292, then high availability manager 296 may identify a prob-
lem with host 276. On the other hand, if each of the hosts has
lost access to data store 292, high availability manager 296
may determine that there is a problem with the data store 292.
Similarly, if only host 276 has lost connection to data store
292 via a first path, but host 280 and host 278 still have access
to the data store 292 via the first path, then it can be deter-
mined that the host 276 is malfunctioning. However, if both
host 276 and host 278 have lost access to data store 292 via the
first path, it may be determined that the data store 292 is
malfunctioning or that there is a full network malfunction.

Note that not all hosts may be configured to have access to
all data stores. For example, host 276 is not configured to have
access to data store 294. In one embodiment, high availability
manager 296 aggregates data store access of hosts that are
configured to have access to a specific data store. For
example, when determining whether one or more hosts or
data store 294 is malfunctioning based on the connection
status between the hosts and data store 294, high availability
manager 296 would not consider the status of host 276
because host 276 is not configured to have access to data store
294.

In one embodiment, ifhigh availability manager 296 deter-
mines that a host is malfunctioning, the high availability
manager 296 migrates virtual machines running on that host
(if any are present) to other hosts. Alternatively, or in addition,
other applications, programs or processes may be migrated
between hosts. In one embodiment, virtual machines (or other
applications, processes, etc.) are migrated off of a host if the
host has lost all access to a data store. In such an embodiment,
if there is at least one available path to the data store (e.g., for
a multi-path data store), no migration may occur.

To migrate a virtual machine, the high availability manager
296 saves a state of the virtual machine. The high availability
manager 296 then starts a new virtual machine on a different
host using the saved state. Once the new virtual machine is up
and running, the high availability manager 296 may redirect a
client that is using the original virtual machine to the new
virtual machine. The original virtual machine can then be shut
down. Migration can occur with little to no interruption to the
client. Once all of the virtual machines are migrated to other
hosts, a malfunctioning host may be shut down for mainte-
nance or replacement. Other applications, processes, etc. may
also be migrated between hosts in a similar manner.

10

15

20

25

30

35

40

45

50

55

60

65

8

In one embodiment, high availability manager 296
migrates paused virtual machines between hosts. The virtual
machines on a malfunctioning host or on a host that has lost
access to a data store may have been paused by the host to
prevent damage to the VMs. In one embodiment, the high
availability manager determines whether to migrate a paused
VM based on a migration policy associated with that VM. The
migration policy may indicate that stateless VMs are not to be
migrated and that stateful VMs are to be migrated. Thus, in
one embodiment, high availability manager 296 determines
whether a paused VM is a stateless VM before migrating the
paused VM. Examples of stateless VMs include VMs associ-
ated with VM pools (described below) and VMs that are web
servers. [f the paused VM is a stateless VM, then no data will
be lost by terminating the paused VM. Therefore, rather than
migrating the paused VM, a new copy of the stateless VM is
started on a different host machine. If the paused VM is a
stateful VM, then high availability manager 296 performs the
migration. Examples of stateful VMs include unique virtual
desktops (e.g., for individual users) and VMs that are data-
base servers.

Virtualization manager 205 includes a VM resuming mod-
ule 212. Once a paused VM has been migrated, VM resuming
module resumes the paused VM. This may be achieved by
sending a resume command to the new host machine on
which the paused VM now resides. The resume command
may include one or more last /O operations attempted by the
paused VM. Alternatively, the information regarding the last
few 1/O operations may be included in the paused VM.

In the example shown in FIG. 2, host controller 274 has
determined that host 276 is malfunctioning, and both VM 282
and VM 284 are stateful VMs. Consequently, host controller
274 will migrate virtual machine 282 to host 280, and will
migrate VM 284 to host 278. Note that high availability
manager 296 has distributed VM 282 and VM 284 between
host 280 and host 278 in a load balanced manner.

FIG. 3 is a flow diagram illustrating a method 300 for one
embodiment of automatically resuming paused virtual
machines. Method 300 may be performed by processing logic
that may comprise hardware (e.g., circuitry, dedicated logic,
programmable logic, microcode, etc.), software (such as
instructions run on a processing device), or a combination
thereof. In one embodiment, method 300 is performed by a
host controller (e.g., host controller 115 of FIG. 1 or host
controller 274 of FIG. 2). In a further embodiment, method
300 may be performed by a virtualization manager (e.g.,
virtualization manager 135 of FIG. 1) running on a host
controller.

Referring to FIG. 3, at block 303 a host controller detects
that a VM running on a host has been paused. The paused VM
may be reported by the host when the host pauses the VM or
in response to a status query from the host controller. The host
may report the paused VM along with a condition that caused
the VM to be paused. Alternatively, the host may report the
paused VM without identifying a condition that caused the
VM to be paused. In such an instance, the host controller may
determine a condition that caused the VM to be paused based
on information gathered from the host and from additional
hosts. For example, the host may report connection status
information for one or more data stores, which may beused to
determine a condition that caused the VM to be paused.

At block 308, the host controller determines whether a
condition that caused the VM to be paused has been resolved.
If the condition that caused the VM to be paused has been
resolved, the method continues to block 320. Otherwise the
method ends.

US 9,329,947 B2

9

At block 320, the host controller sends a command to the
host to resume the paused VM. Resuming the paused VM
includes assigning processor cycles to the paused VM. Addi-
tionally, resuming the paused VM may include performing a
last I/O operation or operations previously attempted by the
VM.

FIG. 4 is a flow diagram illustrating a method 400 for
another embodiment of automatically resuming paused vir-
tual machines. Method 400 may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (such
as instructions run on a processing device), or a combination
thereof. In one embodiment, method 400 is performed by a
host controller (e.g., host controller 115 of FIG. 1 or host
controller 274 of FIG. 2). In a further embodiment, method
400 may be performed by a virtualization manager (e.g., a
virtualization manager that includes a VM resuming module)
running on a host controller.

Referring to FIG. 4, at block 405 a host controller receives
a report from a host that a VM running on the host has been
paused. At block 408, the host controller determines whether
the condition that caused the VM to be paused has been
identified. In one embodiment, the host identifies the problem
that caused the VM to be paused. In another embodiment, the
host reports one or more problems (e.g., loss of connection to
a storage device), but does not specify whether the problems
were what caused the VM to be paused. For example, the host
may report that it has lost access to a data store (e.g., can no
longer communicate with the data store). The host may lack
access to only a single storage device, or may lack access to an
entire storage domain. For multi-path data stores, access is
lost when the host cannot communicate with the data store via
any of the paths.

In some instances, the VM may have been paused without
knowing what problem or condition caused the VM to be
paused. In some instances, no problems may be detected. If
the condition that caused the VM to be suspended was iden-
tified, the method continues to block 410. If the condition that
caused the VM to be paused was not identified, the method
continues to block 412.

At block 412, the host controller starts a resume timer. At
block 418, the host controller resumes the paused virtual
machine once the resume timer expires (times out). The VM
is resumed automatically without requiring any user input. At
block 420, the host controller then determines whether the
VM was again paused by the host. If the VM was not paused
again, it can be determined that the unknown condition that
previously caused the VM to be paused has been resolved. In
this instance, the method ends. If the VM was paused again, it
can be deduced that the condition that previously caused the
VM to be paused has not yet been resolved. In this instance
the method proceeds to block 435, and method 500 is initi-
ated. In one embodiment, the process of starting the resume
timer and resuming the VM when the resume timer expires is
performed a predetermined number of times before continu-
ing to block 435.

Atblock 410, the host controller starts a migration timer. At
block 425, the host controller determines whether the condi-
tion that caused the VM to be paused has been resolved. This
may be determined by polling the host and/or other hosts to
determine, for example, the host’s storage connection status.
If the condition has been resolved, the method proceeds to
block 430, and the paused VM is resumed. The paused VM is
resumed automatically, without user input. If the condition
has not been resolved, the method continues to block 425.

At block 425, the host controller determines whether the
migration timer has expired (timed out). If the migration

10

15

20

25

30

35

40

45

50

55

60

65

10

timer has not expired, the method returns to block 415. if the
migration timer has expired, the method proceeds to block
435, and method 500 is initiated.

FIG. 5 is a flow diagram illustrating a method for one
embodiment of migrating paused virtual machines. Method
500 may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as instructions run on
a processing device), or a combination thereof. In one
embodiment, method 500 is performed by a host controller
(e.g., host controller 115 of FIG. 1 or host controller 274 of
FIG. 2). In another embodiment, method 500 is performed by
a virtualization manager of a host controller.

Referring to FIG. 5, at block 505 a host controller monitors
one or more hosts. Each of the monitored hosts may include
one or more virtual machines operating thereon. The moni-
tored hosts may also include other applications, processes,
services, etc. operating thereon. The hosts may be connected
to a data store on which the VMs write data and from which
the VMs read data.

At block 510, the host controller identifies a host that has
paused a VM due to lack of access to a data store. At block
515, the host controller determines whether the paused VM is
a stateless VM. A stateless VM is a virtual machine that will
not keep any changes that are made to the VM. After a session
with a stateless virtual machine has ended, all changes that
were madeto the stateless VM are lost. A stateless VM may be
a VM from a VM pool (a pool of identical virtual machines,
each of which may be based on a single VM template), a VM
that operates as a web server, etc.

Ifthe VM is a stateless VM, there is no need to migrate the
VM to another host. Instead, the method proceeds to block
525, and the VM is terminated. A copy of the VM is then
loaded on another host. For example, another VM from a VM
pool may be loaded on the other host.

Ifat block 515 it is determined that the VM is a stateful VM
(a VM for which changes are recorded), the method proceeds
to block 520. At block 520, the host controller determines
whether any other hosts have access to the data store. If
another host has access to the data store, then the VM can be
migrated. Thus, the method continues to block 540. If no
other hosts have access to the data store, then migrating the
VM to another host would not enable the VM to be resumed.
Thus, the method continues to block 550.

At block 540, the host controller migrates the paused vir-
tual machine to another host that has access to the data store.
At block 545, the host controller causes the VM to be
resumed.

At block 550, the host controller determines that the data
store and/or network are malfunctioning. The host controller
may then send a notification to an administrator indicating
that the data store is malfunctioning.

FIG. 6 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 600
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In some embodiments, the machine
may be connected (e.g., networked) to other machines in a
LAN, an intranet, an extranet, or the Internet. The machine
may operate in the capacity of a server or a client machine in
a client-server network environment, or as a peer machine in
a peer-to-peer (or distributed) network environment. The
machine may be a personal computer (PC), a tablet PC, a
set-top box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify

US 9,329,947 B2

11

actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The exemplary computer system 600 includes a processing
device 602, a main memory 604 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) (such as synchronous DRAM (SDRAM) or Ram-
bus DRAM (RDRAM), etc.), a static memory 606 (e.g., flash
memory, static random access memory (SRAM), etc.), and a
data storage device 618, which communicate with each other
via a bus 630.

Processing device 602 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 602 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
orthe like. The processing device 602 is configured to execute
the processing logic (e.g., instructions 622) for performing
the operations and steps discussed herein.

The computer system 600 may further include a network
interface device 608. The computer system 600 also may
include a video display unit 610 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 612 (e.g., a keyboard), a cursor control device 614
(e.g., a mouse), and a signal generation device 616 (e.g., a
speaker).

The data storage device 618 may include a machine-read-
able storage medium 628 on which is stored one or more set
of instructions 622 (e.g., software) embodying any one or
more of the methodologies of functions described herein. The
instructions 622 may also reside, completely or at least par-
tially, within the main memory 604 and/or within the process-
ing device 602 during execution thereof by the computer
system 600; the main memory 604 and the processing device
602 also constituting machine-readable storage media.

The machine-readable storage medium 628 may also be
used to store instructions for a virtualization manager having
a VM resuming module (e.g., VM resuming module 140 of
FIG. 1), and/or a software library containing methods that call
the virtualization manager and/or the VM resuming module.
While the machine-readable storage medium 628 is shown in
an exemplary embodiment to be a single medium, the term
“machine-accessible storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-accessible storage medium” shall also be taken to
include any medium that is capable of storing, encoding or
carrying a set of instruction for execution by the machine and
that cause the machine to perform any one or more of the
methodologies of the present invention. The term “machine-
accessible storage medium” shall accordingly be taken to
include, but not be limited to, solid-state memories, and opti-
cal and magnetic media.

Whereas many alterations and modifications of the present
invention will no doubt become apparent to a person of ordi-
nary skill in the art after having read the foregoing descrip-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion, it is to be understood that any particular embodiment
shown and described by way of illustration is in no way
intended to be considered limiting. Therefore, references to
details of various embodiments are not intended to limit the
scope of the claims, which in themselves recite only those
features regarded as the invention.

What is claimed is:

1. A method comprising:

detecting, by a processing device, that a virtual machine

has been paused;

determining that a condition that caused the virtual

machine to be paused has been resolved;

transmitting a command to resume the virtual machine

without restarting the virtual machine; and

causing the virtual machine to perform an input/output

(I/O) operation that was attempted prior to the virtual
machine being paused.

2. The method of claim 1, wherein the condition that
caused the virtual machine to be paused comprises a loss of
access to a data store.

3. The method of claim 2, further comprising:

migrating the virtual machine to a remote host and

resuming the virtual machine after the migrating.

4. The method of claim 3, wherein the remote host and a
computer system comprising the processing device belong to
a cluster.

5. The method of claim 1, further comprising:

starting a timer upon detecting that the virtual machine has

been paused;

wherein the command to resume the virtual machine is

transmitted responsive to detecting expiration of a tim-
eout measured by the timer.

6. The method of claim 1, further comprising:

determining that the virtual machine is a stateless virtual

machine that belongs to a virtual machine pool;
transmitting a command to a first remote host to terminate
the virtual machine; and

loading a copy of the virtual machine from the virtual

machine pool on a second remote host.

7. A non-transitory computer readable storage medium
including instructions that, when executed by a processing
device, cause the processing device to:

detect, by the processing device, that a virtual machine has

been paused;

determine that a condition that caused the virtual machine

to be paused has been resolved;

transmit a command to resume the virtual machine without

restarting the virtual machine; and

cause the virtual machine to perform an input/output (I/O)

operation that was attempted prior to the virtual machine
being paused.

8. The non-transitory computer readable storage medium
of claim 7, wherein the condition that caused the virtual
machine to be paused comprises a loss of access to a data
store.

9. The non-transitory computer readable storage medium
of claim 8, the processing device further to:

migrate the virtual machine to a remote host and

resume the virtual machine after the migrating.

10. The non-transitory computer readable storage medium
of claim 7, wherein the processing device further to:

start a timer upon detecting that the virtual machine has

been paused;

wherein the command to resume the virtual machine is

transmitted responsive to detecting expiration of a tim-
eout measured by the timer.

US 9,329,947 B2

13
11. The non-transitory computer readable storage medium
of claim 7, the processing device further to:
determine that the virtual machine is a stateless virtual
machine that belongs to a virtual machine pool;
transmit a command to a first remote host to terminate the
virtual machine; and
load a copy of the virtual machine from the virtual machine
pool on a second remote host.
12. The non-transitory computer readable storage medium
of claim 7,
wherein while paused the virtual machine is not assigned
any processor cycles.
13. A computing apparatus, comprising:
a network interface device; and
a processing device, coupled to the network interface
device, to:
detect that a virtual machine has been paused;
determine that a condition that caused the virtual
machine to be paused has been resolved;
transmit a command to resume the virtual machine with-
out restarting the virtual machine; and
cause the virtual machine to perform an input/output
(I/O) operation that was attempted prior to the virtual
machine being paused.

10

15

20

14

14. The computing apparatus of claim 13, wherein the
condition that caused the virtual machine to be paused is
comprises a loss of access to a data store.

15. The computing apparatus of claim 14, wherein the
processing device is further to:

migrate the virtual machine to a remote host and

resume the virtual machine after the migration.

16. The computing apparatus of claim 13, wherein the
processing device is further to:

starting a timer upon detecting that the virtual machine has

been paused;

wherein the command to resume the virtual machine is

transmitted responsive to detecting expiration of a tim-
eout measured by the timer.

17. The computing apparatus of claim 13, wherein the
processing device is further to:

determine that the virtual machine is a stateless virtual

machine that belongs to a virtual machine pool;
transmit a command to a first remote host to terminate the
virtual machine; and

load a copy of the virtual machine from the virtual machine

pool on a second remote host.

18. The computing apparatus of claim 13,

wherein while paused the virtual machine is not assigned

any processor cycles.

#* #* #* #* #*

